Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(13): e2202815120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943880

RESUMO

Increasing evidence has suggested that the HIV-1 capsid enters the nucleus in a largely assembled, intact form. However, not much is known about how the cone-shaped capsid interacts with the nucleoporins (NUPs) in the nuclear pore for crossing the nuclear pore complex. Here, we elucidate how NUP153 binds HIV-1 capsid by engaging the assembled capsid protein (CA) lattice. A bipartite motif containing both canonical and noncanonical interaction modules was identified at the C-terminal tail region of NUP153. The canonical cargo-targeting phenylalanine-glycine (FG) motif engaged the CA hexamer. By contrast, a previously unidentified triple-arginine (RRR) motif in NUP153 targeted HIV-1 capsid at the CA tri-hexamer interface in the capsid. HIV-1 infection studies indicated that both FG- and RRR-motifs were important for the nuclear import of HIV-1 cores. Moreover, the presence of NUP153 stabilized tubular CA assemblies in vitro. Our results provide molecular-level mechanistic evidence that NUP153 contributes to the entry of the intact capsid into the nucleus.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , HIV-1/metabolismo , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Infecções por HIV/metabolismo , Poro Nuclear/metabolismo
2.
Viruses ; 13(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34835048

RESUMO

The delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site. Uncoating occurs while, or after, the viral genome is released near the integration site. These independent discoveries reveal a compelling new paradigm of this important step of the HIV-1 life cycle. In this review, we summarize the recent studies related to HIV-1 nuclear import, highlighting the spatial-temporal relationship between the nuclear entry of the virus core, reverse transcription, and capsid uncoating.


Assuntos
Núcleo Celular/metabolismo , HIV-1/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Núcleo Celular/virologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Poro Nuclear/metabolismo , Transcrição Reversa , Integração Viral , Desenvelopamento do Vírus
3.
PLoS Pathog ; 17(6): e1009683, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166473

RESUMO

COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Bioensaio/métodos , COVID-19/virologia , Receptores de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/sangue , Fusão Celular , Células HEK293 , Humanos , Receptores de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/genética , Transfecção , Ligação Viral
4.
Curr Res Struct Biol ; 2: 222-228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34113849

RESUMO

From cellular deposition of the HIV-1 capsid to integration of the viral genome, the capsid constitutes a primary target of a variety of host proteins that work to either promote or inhibit HIV-1 infection. Successful progression of HIV-1 infection depends on interactions between the capsid and host factors involved in stability, cellular transport, nuclear import, and genome integration. The virus must also guard its reverse-transcribing genome inside the capsid from host restriction factors that bind the capsid and suppress infection. Understanding the structure and dynamics of the capsid protein (CA) component and the assembled capsid sheds light on the molecular underpinnings of overall capsid stability, architecture, and flexibility that govern HIV-1 capsid-host interactions. The vast majority of these interactions are mediated through recognition of higher order interfaces only present in the assembled capsid lattice. Patterns formed at these interfaces serve as signposts for capsid-binders. Here we provide a graphical summary of the intricate interactions between host factors and the HIV-1 capsid while highlighting recent research. Insights into how host proteins interact with the capsid is crucial for understanding the HIV-1 replication cycle and developing antiviral therapeutics to prevent viral genome integration.

5.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787158

RESUMO

Despite very low sequence homology, the major capsid proteins of double-stranded DNA (dsDNA) bacteriophages, some archaeal viruses, and the herpesviruses share a structural motif, the HK97 fold. Bacteriophage P22, a paradigm for this class of viruses, belongs to a phage gene cluster that contains three homology groups: P22-like, CUS-3-like, and Sf6-like. The coat protein of each phage has an inserted domain (I-domain) that is more conserved than the rest of the coat protein. In P22, loops in the I-domain are critical for stabilizing intra- and intersubunit contacts that guide proper capsid assembly. The nuclear magnetic resonance (NMR) structures of the P22, CUS-3, and Sf6 I-domains reveal that they are all six-stranded, anti-parallel ß-barrels. Nevertheless, significant structural differences occur in loops connecting the ß-strands, in surface electrostatics used to dock the I-domains with their respective coat protein core partners, and in sequence motifs displayed on the capsid surfaces. Our data highlight the structural diversity of I-domains that could lead to variations in capsid assembly mechanisms and capsid surfaces adapted for specific phage functions.IMPORTANCE Comparative studies of protein structures often provide insights into their evolution. The HK97 fold is a structural motif used to form the coat protein shells that encapsidate the genomes of many dsDNA phages and viruses. The structure and function of coat proteins based on the HK97 fold are often embellished by the incorporation of I-domains. In the present work we compare I-domains from three phages representative of highly divergent P22-like homology groups. While the three I-domains share a six-stranded ß-barrel skeleton, there are differences (i) in structure elements at the periphery of the conserved fold, (ii) in the locations of disordered loops important in capsid assembly and conformational transitions, (iii) in surfaces charges, and (iv) in sequence motifs that are potential ligand-binding sites. These structural modifications on the rudimentary I-domain fold suggest that considerable structural adaptability was needed to fulfill the versatile range of functional requirements for distinct phages.


Assuntos
Bacteriófago P22/química , Capsídeo/química , Dobramento de Proteína , Proteínas do Envelope Viral/química , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína
6.
Biomol NMR Assign ; 11(1): 35-38, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27798771

RESUMO

The P22 bacteriophage group is a subgroup of the λ phage supercluster, comprised of the three major sequence types Sf6, P22, and CUS-3, based on their capsid proteins. Our goal is to investigate the extent to which structure-function relationships are conserved for the viral coat proteins and I-domains in this subgroup. Sf6 is a phage that infects the human pathogen Shigella flexneri. The coat protein of Sf6 assembles into a procapsid, which further undergoes maturation during DNA packaging into an infectious virion. The Sf6 coat protein contains a genetically inserted domain, termed the I-domain, similar to the ones present in the P22 and CUS-3 coat proteins. Based on the P22 example, I-domains play important functional roles in capsid assembly, stability, viability, and size-determination. Here we report the 1H, 15N, and 13C chemical shift assignments for the I-domain of the Sf6 phage coat protein. Chemical shift-based secondary structure prediction and hydrogen-bond patterns from a long-range HNCO experiment indicate that the Sf6 I-domain adopts a 6-stranded ß-barrel fold like those of P22 and CUS-3 but with important differences, including the absence of the D-loop that is critical for capsid assembly and the addition of a novel disordered loop region.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Domínios Proteicos
7.
Biomol NMR Assign ; 9(2): 333-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25694158

RESUMO

CUS-3 is a P22-like tailed dsDNA bacteriophage that infects Escherichia coli serotype K1. The CUS-3 coat protein, which forms the icosahedral capsid, has a conserved HK97-fold but with a non-conserved accessory domain known as the insertion domain (I-domain). Sequence alignment of the coat proteins from CUS-3 and P22 shows higher sequence similarity for the I-domains (35 %) than for the HK97-cores, suggesting the I-domains play important functional roles. The I-domain of the P22 coat protein, which has an NMR structure comprised of a six-stranded ß-barrel, has been shown to govern the assembly, stability and size of the resulting capsid particles. Here, we report the (1)H, (15)N, and (13)C assignments for the I-domain from the coat protein of bacteriophage CUS-3. The secondary structure and dynamics of the CUS-3 I-domain, predicted from the assigned NMR chemical shifts, agree with those of the P22 I-domain, suggesting the CUS-3 and P22 I-domains may have similar structures and functions in capsid assembly.


Assuntos
Bacteriófago P22/química , Proteínas do Capsídeo/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...